SGLang API¶
Proxy endpoints for SGLang inference servers. Available through the /olla/sglang/
prefix.
Endpoints Overview¶
Method | URI | Description |
---|---|---|
GET | /olla/sglang/health | Health check |
GET | /olla/sglang/v1/models | List available models |
POST | /olla/sglang/v1/chat/completions | Chat completion |
POST | /olla/sglang/v1/completions | Text completion |
POST | /olla/sglang/v1/embeddings | Generate embeddings |
POST | /olla/sglang/generate | SGLang native generation |
POST | /olla/sglang/batch | Batch processing |
POST | /olla/sglang/extend | Conversation extension |
POST | /olla/sglang/v1/chat/completions/vision | Vision chat completion |
GET | /olla/sglang/metrics | Prometheus metrics |
GET /olla/sglang/health¶
Check SGLang server health status including RadixAttention cache.
Request¶
Response¶
{
"status": "healthy",
"model_loaded": true,
"radix_cache_ready": true,
"radix_cache_usage_perc": 0.35,
"num_requests_running": 3,
"num_requests_waiting": 0,
"speculative_decoding_enabled": true
}
GET /olla/sglang/v1/models¶
List models available on the SGLang server.
Request¶
Response¶
{
"object": "list",
"data": [
{
"id": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"object": "model",
"created": 1705334400,
"owned_by": "sglang",
"root": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"parent": null,
"max_model_len": 131072,
"permission": [],
"radix_cache_size": 17179869184,
"speculative_decoding": true
}
]
}
POST /olla/sglang/v1/chat/completions¶
OpenAI-compatible chat completion with SGLang optimisations.
Request¶
curl -X POST http://localhost:40114/olla/sglang/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"messages": [
{
"role": "system",
"content": "You are a helpful AI assistant specialising in efficient inference."
},
{
"role": "user",
"content": "Explain the benefits of RadixAttention in SGLang"
}
],
"temperature": 0.7,
"max_tokens": 300,
"stream": false
}'
Response¶
{
"id": "chatcmpl-sglang-abc123",
"object": "chat.completion",
"created": 1705334400,
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "RadixAttention in SGLang provides several key benefits over traditional attention mechanisms:\n\n1. **Advanced Prefix Caching**: Uses a tree-based structure to cache common prefixes more efficiently than block-based approaches, achieving 85-95% cache hit rates.\n\n2. **Memory Efficiency**: Reduces memory usage by 15-20% compared to PagedAttention through better sharing of computation across requests.\n\n3. **Higher Throughput**: Enables handling 150+ concurrent requests efficiently due to the intelligent caching strategy.\n\n4. **Faster Response Times**: Dramatically reduces time-to-first-token for requests with cached prefixes.\n\nThis makes SGLang particularly effective for applications with repetitive patterns like chatbots, code completion, and conversational AI."
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 42,
"completion_tokens": 128,
"total_tokens": 170
},
"metrics": {
"time_to_first_token_ms": 35,
"generation_time_ms": 850,
"radix_cache_hit_rate": 0.92
}
}
Streaming Response¶
When "stream": true
:
data: {"id":"chatcmpl-sglang-abc123","object":"chat.completion.chunk","created":1705334400,"model":"meta-llama/Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"delta":{"role":"assistant"},"logprobs":null,"finish_reason":null}]}
data: {"id":"chatcmpl-sglang-abc123","object":"chat.completion.chunk","created":1705334400,"model":"meta-llama/Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"delta":{"content":"RadixAttention"},"logprobs":null,"finish_reason":null}]}
...
data: {"id":"chatcmpl-sglang-abc123","object":"chat.completion.chunk","created":1705334401,"model":"meta-llama/Meta-Llama-3.1-8B-Instruct","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]}
data: [DONE]
POST /olla/sglang/v1/completions¶
Text completion with SGLang-specific optimisations.
Request¶
curl -X POST http://localhost:40114/olla/sglang/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"prompt": "The advantages of SGLang over vLLM include:",
"max_tokens": 200,
"temperature": 0.8,
"top_p": 0.95,
"stream": false
}'
Response¶
{
"id": "cmpl-sglang-xyz789",
"object": "text_completion",
"created": 1705334400,
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"choices": [
{
"text": "\n\n1. **RadixAttention Efficiency**: More advanced prefix caching with tree-based attention patterns, achieving 85-95% cache hit rates compared to vLLM's 60-70%.\n\n2. **Higher Concurrency**: Supports 150+ concurrent requests versus vLLM's typical 100 limit due to better memory management.\n\n3. **Frontend Language**: Provides a flexible programming interface for complex LLM applications beyond simple API calls.\n\n4. **Speculative Decoding**: Enhanced performance through speculative execution, reducing latency by up to 30%.\n\n5. **Memory Efficiency**: Uses 15-20% less GPU memory while maintaining the same model quality.",
"index": 0,
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 15,
"completion_tokens": 142,
"total_tokens": 157
},
"metrics": {
"time_to_first_token_ms": 28,
"generation_time_ms": 920,
"radix_cache_hit_rate": 0.88
}
}
POST /olla/sglang/generate¶
SGLang's native generation endpoint using Frontend Language programming interface.
Request¶
curl -X POST http://localhost:40114/olla/sglang/generate \
-H "Content-Type: application/json" \
-d '{
"text": "def fibonacci(n):\n if n <= 1:\n return n",
"sampling_params": {
"temperature": 0.2,
"max_new_tokens": 150,
"top_p": 0.9
}
}'
Response¶
{
"text": "def fibonacci(n):\n if n <= 1:\n return n\n else:\n return fibonacci(n-1) + fibonacci(n-2)\n\n# Example usage:\nprint(fibonacci(10)) # Output: 55",
"meta": {
"id": "gen-sglang-def456",
"rid": "conversation-789",
"finish_reason": "stop",
"input_tokens": 12,
"output_tokens": 28,
"completion_time_ms": 450,
"radix_cache_hit": true
}
}
POST /olla/sglang/batch¶
Process multiple generation requests in a single batch for efficiency.
Request¶
curl -X POST http://localhost:40114/olla/sglang/batch \
-H "Content-Type: application/json" \
-d '{
"requests": [
{
"text": "Translate to French: Hello world",
"sampling_params": {
"temperature": 0.1,
"max_new_tokens": 50
}
},
{
"text": "Translate to Spanish: Hello world",
"sampling_params": {
"temperature": 0.1,
"max_new_tokens": 50
}
},
{
"text": "Translate to German: Hello world",
"sampling_params": {
"temperature": 0.1,
"max_new_tokens": 50
}
}
]
}'
Response¶
{
"responses": [
{
"text": "Translate to French: Hello world\n\nBonjour le monde",
"meta": {
"id": "batch-1-sglang-ghi789",
"finish_reason": "stop",
"input_tokens": 7,
"output_tokens": 6,
"completion_time_ms": 320
}
},
{
"text": "Translate to Spanish: Hello world\n\nHola mundo",
"meta": {
"id": "batch-2-sglang-jkl012",
"finish_reason": "stop",
"input_tokens": 7,
"output_tokens": 5,
"completion_time_ms": 315
}
},
{
"text": "Translate to German: Hello world\n\nHallo Welt",
"meta": {
"id": "batch-3-sglang-mno345",
"finish_reason": "stop",
"input_tokens": 7,
"output_tokens": 5,
"completion_time_ms": 310
}
}
],
"batch_meta": {
"total_requests": 3,
"successful": 3,
"total_time_ms": 895,
"avg_radix_cache_hit_rate": 0.67
}
}
POST /olla/sglang/extend¶
Extend an existing conversation using SGLang's conversation management.
Request¶
curl -X POST http://localhost:40114/olla/sglang/extend \
-H "Content-Type: application/json" \
-d '{
"rid": "conversation-789",
"text": "\n\n# Now create a memoized version:",
"sampling_params": {
"temperature": 0.3,
"max_new_tokens": 200
}
}'
Response¶
{
"text": "\n\n# Now create a memoized version:\n\ndef fibonacci_memo(n, memo={}):\n if n in memo:\n return memo[n]\n if n <= 1:\n memo[n] = n\n return n\n memo[n] = fibonacci_memo(n-1, memo) + fibonacci_memo(n-2, memo)\n return memo[n]\n\n# This version is much more efficient for large n\nprint(fibonacci_memo(50)) # Much faster than the recursive version",
"meta": {
"id": "extend-sglang-pqr678",
"rid": "conversation-789",
"finish_reason": "stop",
"input_tokens": 8,
"output_tokens": 82,
"completion_time_ms": 650,
"radix_cache_hit": true,
"context_length": 94
}
}
POST /olla/sglang/v1/chat/completions/vision¶
Vision-enabled chat completion for multimodal models.
Request¶
curl -X POST http://localhost:40114/olla/sglang/v1/chat/completions/vision \
-H "Content-Type: application/json" \
-d '{
"model": "llava-hf/llava-1.5-13b-hf",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": "What architectural pattern is shown in this diagram?"
},
{
"type": "image_url",
"image_url": {
"url": "..."
}
}
]
}
],
"temperature": 0.7,
"max_tokens": 300
}'
Response¶
{
"id": "chatcmpl-vision-sglang-stu901",
"object": "chat.completion",
"created": 1705334400,
"model": "llava-hf/llava-1.5-13b-hf",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "This diagram shows a microservices architecture pattern with the following key components:\n\n1. **API Gateway**: Acts as the entry point routing requests to appropriate services\n2. **Load Balancer**: Distributes traffic across multiple service instances\n3. **Service Mesh**: Handles inter-service communication with features like service discovery, load balancing, and monitoring\n4. **Container Orchestration**: Manages deployment and scaling of containerised services\n5. **Shared Data Storage**: Each microservice has its own database following the database-per-service pattern\n\nThis architecture promotes scalability, fault isolation, and independent deployment of services."
},
"logprobs": null,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 1024,
"completion_tokens": 118,
"total_tokens": 1142
},
"vision_metrics": {
"image_processing_time_ms": 145,
"vision_encoding_tokens": 1012
}
}
POST /olla/sglang/v1/embeddings¶
Generate embeddings using SGLang (if model supports embeddings).
Request¶
curl -X POST http://localhost:40114/olla/sglang/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"model": "BAAI/bge-large-en-v1.5",
"input": "SGLang provides efficient inference with RadixAttention",
"encoding_format": "float"
}'
Response¶
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [0.0234, -0.0567, 0.0891, ...]
}
],
"model": "BAAI/bge-large-en-v1.5",
"usage": {
"prompt_tokens": 12,
"total_tokens": 12
}
}
GET /olla/sglang/metrics¶
Prometheus-compatible metrics endpoint for monitoring.
Request¶
Response (Prometheus format)¶
# HELP sglang_request_duration_seconds Request duration in seconds
# TYPE sglang_request_duration_seconds histogram
sglang_request_duration_seconds_bucket{model="meta-llama/Meta-Llama-3.1-8B-Instruct",le="0.1"} 65
sglang_request_duration_seconds_bucket{model="meta-llama/Meta-Llama-3.1-8B-Instruct",le="0.5"} 150
sglang_request_duration_seconds_bucket{model="meta-llama/Meta-Llama-3.1-8B-Instruct",le="1"} 210
sglang_request_duration_seconds_sum{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 95.2
sglang_request_duration_seconds_count{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 250
# HELP sglang_num_requests_running Number of requests currently running
# TYPE sglang_num_requests_running gauge
sglang_num_requests_running{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 5
# HELP sglang_num_requests_waiting Number of requests waiting in queue
# TYPE sglang_num_requests_waiting gauge
sglang_num_requests_waiting{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 2
# HELP sglang_radix_cache_usage_perc RadixAttention cache usage percentage
# TYPE sglang_radix_cache_usage_perc gauge
sglang_radix_cache_usage_perc{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 0.42
# HELP sglang_radix_cache_hit_rate RadixAttention cache hit rate
# TYPE sglang_radix_cache_hit_rate gauge
sglang_radix_cache_hit_rate{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 0.89
# HELP sglang_time_to_first_token_seconds Time to first token in seconds
# TYPE sglang_time_to_first_token_seconds histogram
sglang_time_to_first_token_seconds_bucket{model="meta-llama/Meta-Llama-3.1-8B-Instruct",le="0.05"} 120
sglang_time_to_first_token_seconds_bucket{model="meta-llama/Meta-Llama-3.1-8B-Instruct",le="0.1"} 200
sglang_time_to_first_token_seconds_sum{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 15.8
sglang_time_to_first_token_seconds_count{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 250
# HELP sglang_spec_decode_num_accepted_tokens_total Total speculative tokens accepted
# TYPE sglang_spec_decode_num_accepted_tokens_total counter
sglang_spec_decode_num_accepted_tokens_total{model="meta-llama/Meta-Llama-3.1-8B-Instruct"} 12458
SGLang-Specific Parameters¶
Frontend Language Parameters¶
Parameter | Type | Default | Description |
---|---|---|---|
rid | string | auto | Request/conversation ID for tracking |
return_logprob | boolean | false | Return log probabilities |
logprob_start_len | integer | 0 | Start position for logprob calculation |
top_logprobs_num | integer | 0 | Number of top logprobs to return |
RadixAttention Configuration¶
Parameter | Type | Description |
---|---|---|
radix_cache_enable | boolean | Enable RadixAttention caching |
radix_cache_size | float | Cache size as fraction of GPU memory |
max_tree_depth | integer | Maximum prefix tree depth |
Speculative Decoding Parameters¶
Parameter | Type | Description |
---|---|---|
speculative_draft_length | integer | Number of draft tokens to generate |
spec_decode_acceptance_threshold | float | Token acceptance threshold |
Vision Parameters¶
Parameter | Type | Description |
---|---|---|
max_image_resolution | integer | Maximum image resolution |
image_aspect_ratio | string | Image aspect ratio handling |
vision_feature_select_strategy | string | Vision feature selection strategy |
Configuration Example¶
endpoints:
- url: "http://192.168.0.100:30000"
name: "sglang-server"
type: "sglang"
priority: 90
model_url: "/v1/models"
health_check_url: "/health"
check_interval: 5s
check_timeout: 2s
headers:
X-API-Key: "${SGLANG_API_KEY}"
Request Headers¶
All requests are forwarded with:
X-Olla-Request-ID
- Unique request identifierX-Forwarded-For
- Client IP address- Custom headers from endpoint configuration
Response Headers¶
All responses include:
X-Olla-Endpoint
- Backend endpoint name (e.g., "sglang-server")X-Olla-Model
- Model used for the requestX-Olla-Backend-Type
- Always "sglang" for these endpointsX-Olla-Response-Time
- Total processing timeX-SGLang-Cache-Hit
- Whether RadixAttention cache was hitX-SGLang-Spec-Decode
- Whether speculative decoding was used
Performance Features¶
SGLang provides several performance optimisations:
- RadixAttention: Advanced tree-based prefix caching with 85-95% hit rates
- Speculative Decoding: Faster inference with draft models
- Frontend Language: Flexible programming interface for complex workflows
- Disaggregation: Separate prefill and decode phases
- Enhanced Multimodal: Optimised vision and image processing
- Higher Concurrency: Support for 150+ concurrent requests